
Getting Your WMQ JMS Applications Getting Your WMQ JMS Applications
Running, With or Without WASRunning, With or Without WAS

Simon Gormley (Simon Gormley (sgormley@uk.ibm.comsgormley@uk.ibm.com))
IBM Hursley ParkIBM Hursley Park

August 11August 11th,th, 2011 2011
Session 9361Session 9361

mailto:sgormley@uk.ibm.com
mailto:sgormley@uk.ibm.com

Agenda

• WMQ JMS in standalone J2SE Environments
• JNDI or programmatic configuration
• Administration tools
• Running your application

• WMQ JMS in WebSphere Application Server Environments
• The extras, or why to use WAS
• MDBs, EJBs, Servlets…
• Deploying your application

• Changing parameters and tuning
• WMQ parameters
• WAS parameters

• Demo

My JMS Application

Administrative
Store

How does a JMS application work?

Queue Manager

Connection
Factory

Destination

How do Connection Factories and Destinations get created?

JNDI or programmatic configuration

• Recommended way to define JMS resources is to use a
JNDI (Java Naming and Directory Interface) store
• Requires a JNDI store to be created

• Easy to change properties, or even JMS provider!

• Easy to share definitions across enterprise

• Encourages code re-use.

• Can also programmatically define resources
• Requires the application to set all properties

• Needs recompilation to alter/add properties

• Each application needs to set properties

Sample code for each style

• JNDI:
Hashtable environment = new Hashtable();

environment.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");

environment.put(Context.PROVIDER_URL, "file:/IBM/JNDI/");

Context ctx = new InitialDirContext(environment);

cf = (ConnectionFactory) ctx.lookup(“MyCF”);

• Programmatic:
MQConnectionFactory cf = new MQConnectionFactory();

cf.setQueueManager("MyQM");

cf.setTransportType(JMSC.MQJMS_TP_CLIENT_MQ_TCPIP);

cf.setHostName("myhost");

cf.setPort(14140);

…

…

WMQ JMS Administration Tools:
JNDI Repositories

• The WMQ JMS Administration Tools need access to a JNDI
Repository to store connection factory and destination definitions.

• Two main types of JNDI Repository are supported.

• LDAP Directories
• Heavyweight.
• Offers high levels of security.
• Easy to share connection factory and destination objects between multiple JMS

clients running on different machines.
• Can be difficult to set up.

• File system
• Very lightweight.
• Easy to set up and get running.
• Not very secure.
• Hard to share repository between multiple JMS clients.

• WebSphere MQ SupportPac ME01 allows the queue manager to be
used as a JNDI store, as well as auto-define existing queues.

WMQ JMS Administration Tools:
JMSAdmin

• Command line tool.
• Supported on all platforms.
• Installed into <WMQ_HOME>\java\bin.
• To run it:

•Edit JMSAdmin.config file to point to the JNDI repository that
will be used, and optionally pass in authentication credentials.

•Then enter JMSAdmin

• Can be used to run scripts
• For example “jmsadmin < myscript.txt”

WMQ JMS Administration Tools:
JMSAdmin

• JMSAdmin.config contains three properties
• INITIAL_CONTEXT_FACTORY

• The class used by the JNDI repository to store and retrieve objects.
• Possible values are:

 com.sun.jndi.ldap.LdapCtxFactory
Used for LDAP Repositories on distributed platforms.

 com.ibm.jndi.LDAPCtxFactory
Used to connect to an LDAP repository from JMS applications running on z/OS.

 com.sun.jndi.fscontext.RefFSContextFactory
Used for file system Repositories

WMQ JMS Administration Tools:
JMSAdmin

•PROVIDER_URL
• An address used by the JMSAdmin tool to access the JNDI Repository.
• Possible values are:

 ldap://<hostname>/<contextname>
The hostname and port that the LDAP server is listening on, followed by
the top level directory context where the objects will be stored.

 file:<drive>/<pathname>
The path to the directory where the administered object definitions will
be saved. The directory must exist before JMSAdmin can be run.

WMQ JMS Administration Tools:
JMSAdmin

•SECURITY_AUTHENTICATION
• Used when connecting to a secure LDAP JNDI Repository.
• Possible values are:
none
The JMSAdmin tool does not pass any security information to LDAP.

simple
The JMSAdmin tool sends an LDAP distinguished name and password
 to the Server for authentication during startup.

CRAM-MD5
The JMSAdmin tool flows an LDAP distinguished name and password

(encrypted as an MD5 hash) when connecting to the LDAP server.
 The distinguished name and password can be specified, using the
PROVIDER_USERDN and PROVIDER_PASSWORD properties, or
JMSAdmin will prompt

WMQ JMS Administration Tools:
JMSAdmin

• JMSAdmin expects commands to be in the format
• Verb noun(value) noun(value)…..

• Useful verbs are:
• DEFINE
• ALTER
• DISPLAY

• Nouns include:
• CF - JMS Connection Factory
• QCF - JMS Queue Connection Factory
• TCF - JMS Topic Connection Factory
• Q - JMS Queue
• T - JMS Topic
• QMGR - Queue Manager Name
• QU - Queue Name
• TO - Topic Name

WMQ JMS Administration Tools:
JMSAdmin

• To create a Queue Connection Factory for the queue
manager QM1, enter the command:
• DEFINE QCF(testQCF) QMGR (QM1)

• The Queue Connection Factory will be stored in the JNDI
Repository with the name testQCF.

• To create a JMS Queue Destination that points to the
queue “test”, enter:
• DEFINE Q(testQ) QU(test)

• The object will be stored in JNDI with the name testQ.

WMQ JMS Administration Tools:
MQ Explorer

• Graphical version of the JMSAdmin tool.
• To create JMS Administered Objects in MQ Explorer:

•Set up a context
• Directory-like structure where the objects will be stored.

•Select the type of JNDI repository that will be used
• File system
• LDAP
• Another JNDI repository

•Specify the address of the JNDI repository
• For file system contexts, select the directory where the Administered
Objects will be stored

• For LDAP repositories, enter the URL of the LDAP server

•Optionally enter the username and password used to connect to the
JNDI repository

•And that’s it!

WMQ JMS Administration Tools:
MQ Explorer

• MQ Explorer wizards provide step-by-step instructions for
creating JMS Administered Objects.

• MQ Explorer also allows Queue or Topic Destination
Administered Objects at the same time as creating the
actual Queue or Topic.

• MQ Queues and Topics can also be created from
Destination Administered Objects.

Running your WMQ JMS Application

• JVM Classpath needs to include:
• com.ibm.mqjms.jar
• jms.jar
• JNDI libraries, such as fscontext.jar, if using JNDI

• If using bindings mode, JVM java.library.path needs to
include the WMQ Java lib directory.

• If on a different machine to the queue manager, use SupportPac
MQC7 to obtain the WMQ JMS client libraries

• That's it, run your Java Application!

If it goes wrong...

• Runtime errors are reported as JMSExceptions, which
include the MQException (if any) that caused it
• Contains the MQ reason code of the problem

• For example RC=2059 MQRC_Q_MGR_NOT_AVAILABLE
Caused by: com.ibm.mq.MQException: JMSCMQ0001: WebSphere
MQ call failed with compcode '2' ('MQCC_FAILED') reason
'2059' ('MQRC_Q_MGR_NOT_AVAILABLE').

• Not all MQRC's reported as JMSExceptions, such as RC=2033
MQRC_NO_MSG_AVAILABLE

• mqjms.log and FFDC files generated with serious errors

Agenda

• WMQ JMS in standalone J2SE Environments
• JNDI or programmatic configuration
• Administration tools
• Running your application

• WMQ JMS in WebSphere Application Server Environments
• The extras - why to use WAS
• MDBs, EJBs, Servlets…
• Deploying your application

• Changing parameters and tuning
• WMQ parameters
• WAS parameters

• Demo

The extras – why use WMQ JMS with
WAS?

• WebSphere Application Server provides an environment to run JMS
applications in.

• Built-in JNDI repository

• Web based administration, and scripted administration tools integrated closely with
WMQ

• WMQ JMS client installed and configured for use with WAS

• Less coding to achieve enterprise class applications
• MDBs – potential to code a single method that results in multi-instance message

processor

• EJBs – easy access/re-use of code

• Servlets/JSPs – web access to MQ

• Transaction management and coordination

• Resource management, such as connection pooling

• Easy integration with other JEE applications

Message-driven beans

• Message-driven beans (MDBs) are JMS applications that
get called when a message arrives on a given destination.
• Similar to WMQ triggered applications.

• Recommended way of getting WMQ messages into WAS.

• Application developer only has to worry about the business
logic required to process the message.
• Application server handles the actual detection and delivery

of the message.

Message-driven beans

• MDBs must implement a method called onMessage().
• This is called when a message is detected on the specified

destination.
• Message is passed into the method.
• onMessage() simply needs to contain the code to process it.
• Application Server handles all transaction management.

• Application server handles concurrent processing to
facilitate scaling

• IBM Rational tooling provides wizards for creating MDBs.

Message-driven beans

public void onMessage(Message message) {

 try {

 if (message instanceof TextMessage) {

 TextMessage textMsg = (TextMessage)message;

 System.out.println("Message text is " + textMsg.getText());

 }

 } catch (JMSException ex) {

 System.out.println("JMSException occurred : " + ex);

 }

 }

Deploying message-driven beans:
Activation Specifications

• WAS 7 and newer access WMQ using the WebSphere MQ
Resource Adapter (RA)
• Based on the J2EE Connector Architecture (JCA) 1.5

standard.

• Standard mechanism for listening for messages on JMS
destinations.

• Contain information to create a connection to a specified
queue or topic on a queue manager.

• Provides a common way for all JEE 1.4 compliant
application servers to connect to JMS providers.

Activation Specifications

• To create an Activation Specification in WAS:
• Specify the JMS Destination to listen on.
• Enter details of the queue manager where the Destination

resides.
• Optionally, specify a JMS Message Selector.

• SQL expression.
• Only messages that match the Selector will be delivered to

applications using this Activation Specification.
• A handy wizard takes you through all of the necessary steps,

and checks it works too!.
• When deploying the MDB application, specify the

Activation Specification to use.

Enterprise Java Beans/Servlets

• Java applications that run inside of WAS.

• EJBs and Servlets need to create their own connections to
WMQ and get (or send) messages themselves.
• EJBs and Servlets use the standard JMS API, in a similar

way to standalone JMS applications.
• Can be easier than MDBs when handling responses in

request-reply messaging
• Application server still handles transaction management,

based on values specified in the application’s deployment
descriptor.

Application Development
Enterprise Java Beans

@Resource()
private ConnectionFactory cf;
@Resource()
private Queue d;

public void receiveMessage() {
 try {
 Connection conn = cf.createConnection();
 conn.start();
 Session sess = conn.createSession(true,Session.AUTO_ACKNOWLEDGE);
 MessageConsumer consumer = sess.createConsumer(d);
 Message msg = consumer.receive(30000);
 if (msg instanceof TextMessage) {
 System.out.println(“Message received:“ + ((TextMessage) msg).getText());
 }

 conn.close();
 } catch (Exception ex) {

System.out.println("Exception : " + ex);
 }
 }

Enterprise Java Beans/Servlets
Deploying

• Define required Connection Factories and Destinations
• Web based administration console allows most properties to be configured

• Other properties can be set as custom properties, using JMSAdmin names
and values.

• Applications should use resource-references to decouple application
connection factory/destination names from server names.

• Allows reconfiguration without recompilation.

• During deploy, references link to real resources

• EJB 3 introduces annotations
• Remove reliance on XML configuration files

• Resource references defined in the application code, for ease of use.

WAS

JNDI
Resource

ApplicationReference

Agenda

• WMQ JMS in standalone J2SE Environments
• JNDI or programmatic configuration
• Administration tools
• Running your application

• WMQ JMS in WebSphere Application Server Environments
• The extras, or why to use WAS
• MDBs, EJBs, Servlets…
• Deploying your application

• Changing parameters and tuning
• WMQ parameters
• WAS parameters

• Demo

WMQ Connection Factory Properties:
Connection Name List

• This property specifies a list of hostnames and ports to
attempt to connect to.
• Comma-separated list of “hostname(port)” entries
• Similar to a CCDT with multiple entries.
• Can be used with client reconnection options and client

reconnection timeout to allow automatic reconnection to a
standby queue manager.

• JMSAdmin Property Name: CONNECTIONNAMELIST /
CNLIST

WMQ Connection Factory Properties:
Automatic Client Reconnection

• Determines whether the JMS client should reconnect on
failure

• Used in conjunction with connection name list
• Allows failover to multi-instance queue manager
• Not for use with WAS
• Reconnects happen until reconnection timeout value is

reached.

• JMSAdmin property : CLIENTRECONNECTOPTIONS /
CLIENTRECONNECTTIMEOUT

• This property specifies whether JMS applications that use this Factory can
share their connection to a Version 7 queue manager.

• Useful to reduce the number of network connections to a queue manager.

• Can have slight performance impact.
• Multiple JMS applications will be sending data to a queue manager and

waiting for a response over the same channel.
• Set server connection channel SHARECNV to 1 for maximum performance

• JMSAdmin Property Name: SHARECONVALLOWED / SCALD

WMQ Connection Factory Properties:
Shared Conversation Allowed

QM

JVM

Conn.

TCP Socket
Conn.

Conn.

WMQ Connection Factory Properties:
MQMD Read/Write enabled

• Determines if MQMD properties can be set via JMS get/set
message property methods.
• Allows full access to the MQMD header values
• Useful for sending or receiving messages from MQ

applications that use specific header properties.
• JMS message property names begin with

“JMS_IBM_MQMD…”

• MSGCTX

• JMSAdmin Property Name: MDREAD / MDR &
MDWRITE / MDW

WMQ Destination Properties:
Target Client

• Indicates whether messages sent to this destination are for
other JMS applications, or for non-JMS WMQ applications.
• WMQ JMS messages, by default, have an RFH2 header

containing JMS specific information.
• If a message is for a non-JMS application, this header may

cause problems, so can be turned off.

• JMSAdmin Property Name: TARGCLIENT / TC

MQMD

RFH2

Data

JMS Messages

MQMD

Data

Non-JMS Messages

• In general, messages are sent to JMS applications one at a time.

• The Read Ahead Allowed property tells the queue manager whether
non-persistent messages can be streamed to the client application in
preparation for them being consumed.

• Messages are stored in a buffer on the client.

• If the client application terminates unexpectedly, all unconsumed
non-persistent messages are discarded.

• JMSAdmin Property Name: READAHEADALLOWED /
 RAALD

Queue Manager

WMQ Destination Properties:
Read Ahead Allowed

JMS Application JMS Client

WMQ Destination Properties:
Asynchronous Puts

• Sending equivalent of Read Ahead Allowed
• Allows messages to be sent, but the JMS client does not

wait for queue manager acknowledgement.
• Improves performance of sending applications
• JMS client checkpoints during commit or according to

SENDCHECKCOUNT for non-transacted sessions.

• JMSAdmin property names: PUTASYNCALLOWED /
SENDCHECKCOUNT

Agenda

• WMQ JMS in standalone J2SE Environments
• JNDI or programmatic configuration
• Administration tools
• Running your application

• WMQ JMS in WebSphere Application Server Environments
• The extras, or why to use WAS
• MDBs, EJBs, Servlets…
• Deploying your application

• Changing parameters and tuning
• WMQ parameters
• WAS parameters

• Demo

WAS Configuration:
Activation Specifications

• How are messages destined for MDBs
processed?

QM

Activation Specification

Work Manager

Thread
Pool

Q

ServerSessions

Msg

WAS Configuration
Activation Specifications - Threads

• To process a message, a ServerSession and thread are
required

• Activation Specification parameter Maximum Sessions
configures ServerSession pool, default 10
• ServerSession pool per MDB

• Application Server Thread pool
WMQJCAResourceAdapter used, default max 25
• Thread pool used by all MDBs.

• So, by default, 3 MDBs could exhaust the threads
• Will cause slower processing
• Recommendation is that thread pool maximum accounts for

all MDB maximums

WAS Configuration
Activation Specifications - Recovery

• What happens if the connection to a queue manager used
by Activation Specifications is broken?

• The Activation Specification has recovery features to allow
it to attempt several reconnection attempts before
stopping.

• Default is to try 5 times in 5 minute intervals.
• Configured using reconnectionRetryCount /

reconnectionRetryInterval (ms) on the Resource Adapter, for
all Activation Specifications.

• Accessed through Resources -> Resource Adapters, but
need to “Show built-in Resources”

• If the Activation Specification stops, this is only reported in
Application Server logs.

WAS Configuration
JMS User authentication

• WAS has built-in user credential repositories that can be defined with
username and password details

• JAAS – J2C Authentication Data
• Activation Specifications allow this to be configured in the Security

parameters
• Connection Factories also allow this to be configured, although

application configuration determines if it will be used.
• The application needs to use JEE resource-references to access the

connection factory
• The res-auth parameter needs to be set to “container” for container

managed authentication.
• res-auth of application, or not using resource-references means the

application is responsible for any authentication information
• As for other WMQ clients, security exits are required to validate

passwords, WMQ only checks user id.

createConnection(user,password)

Agenda

• WMQ JMS in standalone J2SE Environments
• JNDI or programmatic configuration
• Administration tools
• Running your application

• WMQ JMS in WebSphere Application Server Environments
• The extras, or why to use WAS
• MDBs, EJBs, Servlets…
• Deploying your application

• Changing parameters and tuning
• WMQ parameters
• WAS parameters

• Demo

Any questions?

• If you have any questions, or ideas for future topics, feel
free to email me at sgormley@uk.ibm.com

	Getting Your WMQ JMS Applications Running, With or Without WAS
	Agenda
	How does a JMS application work?
	JNDI or programmatic configuration
	Sample code for each style
	WMQ JMS Administration Tools: JNDI Repositories
	WMQ JMS Administration Tools: JMSAdmin
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	WMQ JMS Administration Tools: JMSAdmin
	WMQ JMS Administration Tools: MQ Explorer
	Slide 14
	Running your WMQ JMS Application
	If it goes wrong...
	Slide 17
	The extras – why use WMQ JMS with WAS?
	 Message-driven beans
	Slide 20
	Slide 21
	Deploying message-driven beans: Activation Specifications
	 Activation Specifications
	 Enterprise Java Beans/Servlets
	Application Development Enterprise Java Beans
	Enterprise Java Beans/Servlets Deploying
	Slide 27
	WMQ Connection Factory Properties: Connection Name List
	WMQ Connection Factory Properties: Automatic Client Reconnection
	WMQ Connection Factory Properties: Shared Conversation Allowed
	WMQ Connection Factory Properties: MQMD Read/Write enabled
	WMQ Destination Properties: Target Client
	WMQ Destination Properties: Read Ahead Allowed
	WMQ Destination Properties: Asynchronous Puts
	Slide 35
	WAS Configuration: Activation Specifications
	WAS Configuration Activation Specifications - Threads
	WAS Configuration Activation Specifications - Recovery
	WAS Configuration JMS User authentication
	Slide 40
	Any questions?

